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he efficient flow of information is a
key element in today’s technology
and business environments. This flow is
supported by a complex computer
and communications infrastructure that,
if properly designed and operated, is
invisible to end users. High-speed network transport
mechanisms, such as ATM, serve as enabling
technologies for new classes of communications ser-
vices, such as multimedia and video on demand, that
are typically grouped under the heading of B-ISDN.

As these new communications services evolve
and the needs of users change, the enterprise
must respond by modifying existing communications
systems or by implementing entirely new ones. To
this end, telecommunications professionals are being
called upon to design and manage these systems
in the face of fast-moving technology and a cli-
mate of increasing customer expectations. Design
and management decisions require predictions of
network performance; decisions based on poor
predictions may adversely affect network customers’
perception of the new technology. Analytical
techniques, computer simulation, projections
from existing experience, and experimentation
are methods that are used to evaluate and com-
pare network designs and protocols. Independent
of the prediction methodology, however, design and
management decisions often must be made with
incomplete knowledge of impending user demands
and how the system will evolve.

The goal of this article is to provide an overview
of computer simulation modeling for communica-
tions networks, as well as some important related
modeling issues. This article is intended to be
neither a detailed tutorial on computer simula-
tion of communications networks, nor a mono-
graph for experts in discrete-event simulation,
nor a review of specific simulation tools (refer to
[1}inthisissue); several excellent texts provide com-
prehensive treatments of various aspects of simu-
lation [2-10]. Rather, we give a brief overview of
discrete-event simulation and single out two

important modeling issues that are germane to extant
and emerging networks: traffic modeling and
rare-event estimation.

Monte Carlo computer simulation is a flexible
performance prediction tool used widely in sci-
ence and engineering. Its flexibility stems from
the fact that it consists of a computer program
that “behaves” like the system under study.
Unlike analytical models, which often require
many assumptions and are too restrictive for
mostreal-world systems, simulation modeling places
few restrictions on the classes of systems under study.
For communications networks, developing a sim-
ulation program requires:

* Modeling random user demands for network
resources.

* Characterizing network resources needed for pro-
cessing those demands.

* Estimating system performance based on out-
put data generated by the simulation.

The operation of communications networks
can be conveniently described by simulation pro-
grams. The stochastic nature of demands for net-
work resources is modeled using pseudo-random
number generators. The execution of a computer
simulation model is comparable to conducting an
in-vitro experiment on the target system. All in
all, a Monte Carlo simulation program can serve
as a flexible testbed for conducting system experi-
mentation without disturbing production net-
worksor constructing software/hardware prototypes.

Several factors contribute to the difficulty of suc-
cessfully applying simulation technology to per-
formance evaluation. To begin with, the nature of
user demands for network resources may be
incompletely known or poorly understood. Further,
networks are in a perpetual state of flux, because
user services and networking technologies constantly
alter usage patterns. Thus, any model of user traf-
fic would necessarily be approximate or even
speculative, especially when new services are
under consideration. Traffic models are reviewed
subsequently in this article.
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l’ Figure 1. DES flow design.

Simulation programs can be used to closely model
the processing of user demands for network services.
Such models can contain tremendous detail,
especially for large networks. However, the exe-
cution of detailed models may require prohibitive
amounts of computational resources. Itis not uncom-
mon for network simulations to require days of
processing time on a modern workstation. The
analyst must be aware of the trade-off between model
detail and simulation execution time. Frugal
modeling is often called for, i.e., modeling that
includes only those network functions that have
an appreciable impact on the desired performance
metrics. The simulation of a large and complex
network is treated in a companion paper {11].

Because executing a simulation is analogous
to conducting an experiment involving randomness,
simulation outputs must be treated asrandom obser-
vations. In a similar vein, because a model is
viewed as a faithful representation of the target
system, instrumentation is required in order to
collect statistics and formulate performance pre-
dictions. The success of a simulation study hinges on
identifying appropriate performance metrics and
then devising a strategy for exploring the ensuing
performance response surface. A system response
surface is rarely one-dimensional; more often,
the desired response of the system is a function
of a parameter vector. For example, the cell-loss rate
in an ATM network is a function of a set of con-
gestion-control parameters. Correlation in the mea-
sured observations must be taken into account when
forming statistical performance estimates. For exam-
ple, positive autocorrelation in a sequence of
delay times would manifest itself as bursts of long
(short) delays: i.e., if message k has experienced a
long (short) delay, then it is likely that message
k+1 will also experience a long (short) delay. The
autocorrelated nature of samples obtained from sim-
ulation (or measurement records from opera-
tional systems) complicates the task of forming
performance predictions. Methods such as repli-
cation, batch means, and regeneration are used
to address sample dependence [2]. Furthermore,
rare events, such as ATM cell losses, are key met-
rics that characterize the performance of emerg-

ing broadband networks. Using simulation to
estimate the probability of rare events and their effect
on performance is problematic, because vast
computational resources may be required to gen-
erate a sufficient number of events from which
statistical estimates may be formed with adequate
statistical confidence. Simulation techniques to esti-
mate rare-event probabilities in communications
networks are addressed in a following section.
The rest of this article provides an overview of
simulation, with a slant toward telecommunications
networks, and discussions of two modeling issues
of special significance to today’s networks: traffic
models appropriate for high-speed networks and
importance sampling as a tool for estimating
rare-event probabilities in broadband networks.

Discrete-Event Simulation

rom a high-level perspective, telecommunica-

tions networks can be seen as users who gen-
erate demands for network resources, and protocols
(distributed algorithms) that control the alloca-
tion of network resources to satisfy those demands.
The generation of user demands and their satis-
faction are encapsulated in simulation events,
which are ordered by their time of occurrence.
The action of the protocols depends on the state
of the network at the time the demand was issued.
A simple routing algorithm, for instance, may
send packets to the output link with the shortest
buffer. This event-based processing lends itself to
a method known as discrete-event simulation
(DES) [12]. Most simulation tools for telecom-
munications networks are based on DES [1]. An
important characteristic of DES models is that
they keep time via simulation clocks, which
change by random increments. The basic executable
unit in DES models is an event (a program that is
executed at discrete simulation times).

InDES, the state of the simulated system s stored
in a set of system state variables. Event routines
cause state variables to be modified. An event list
is used to control the execution sequence of these
event routines; the list consists of events in
increasing chronological order. Event routines
canadd or delete items from the event list, and pseu-
do-random number generatorsin the event routines
provide the requisite randomness for modifying and
scheduling of future events. From a high-level
viswpoint, running a simulation is, in essence, the
repeated execution of a loop, where at each itera-
tion the most imminent event (the one with the
earliest scheduled time) is executed in turn. A
flow diagram for DES is shown in Fig. 1.

Typical events ina communications network sim-
ulation include the arrival of demands for net-
work resources. A description of network resources,
which is needed to satisfy the demand, is associat-
ed with each arrival. The time between succes-
sive demand arrivals as well as the nature of the
required network resources are important elements
of traffic modeling to be discussed later.

In communications network simulation, enti-
ties acted upon by event routines include calls,
messages, packets, and cells. These entities are
represented internally by data structures, which
are often closely related to the message/packet
format defined by the protocol. For example, source
and destination addresses as well as control infor-
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mation and datamight be organized in standard pack-
et formats. A data structure representing a pack-
et would contain these elements in addition to
simulation-specific information. A packet-cre-
ation time stamp, for instance, could be used for
statistics collection. The data field might contain
a length indication or, in more detailed models, a
pointer to another data structure that represents
a network-layer packet. Such encapsulation of
data structures is a common feature in communi-
cations networks and is also supported by object-ori-
ented programming languages. Clearly, every
DES must have an initialization mechanism to estab-
lish the initial system state, statistical collection rou-
tines to obtain measurements, a post-processor to
transform the collected statistics into the desired
performance estimates, and acoordinating program
to control the event list, post-processor, and initi-
ation and termination of the simulation.

Traffic modeling is a key element in simulat-
ing communications networks. A clear under-
standing of the nature of traffic in the target
system and subsequent selection of an appropri-
ate random traffic model are critical to the suc-
cess of the modeling enterprise.

An Overview of Traffic
Modeling

In this section, we survey commonly used traffic
models. Such models are employed in two fun-
damental ways: either as part of an analytical model,
or to drive a discrete-event simulation. The most
common modeling context is queueing, where
traffic is offered to a queue or a network of
queues and various performance measures are
calculated.

Simple traffic consists of single arrivals of discrete
entities (packets, cells, etc). It can be mathematically
described as a point process [13], consisting of a
sequence of arrival instants T1,T5...,T,,... mea-
sured from the origin 0; by convention, T = 0. There
are two additional equivalent descriptions of
point processes: counting processes and interarrival
time processes. A counting process {N()}7 is a
continuous-time, non-negative integer-valued
stochastic process, where N(f)=max{n:T,< t} is
the number of (traffic) arrivals in the interval
(0,]. An interarrival time process is a non-negative
random sequence {4}y, where 4, = T, - T,
is the length of the time interval separating the
nth arrival from the previous one. The equiva-
lence of these descriptions follows from the
equality of events:

Vo =n}={r,se<r,.}
n+l

= {iAk St<2Ak}
k=1 k=1

since T, =X _ ;4. Unless otherwise stated, we
assume throughout that {4,,} isa stationary sequence
and that the common variance of the A, is finite.
Compound traffic consists of batch arrivals;
that is, arrivals may consist of more than one unit
at an arrival instant 7. To fully describe com-
pound traffic, one also needs to specify a non-
negative random sequence {B,}5-1, where B, is
the (random) number of unitsin the batch. Ata high-

er level of abstraction, B, may represent some
general attributes of the ath arrival, such as the
amount of “work” associated with the nth arrival
or its itinerary in a network. Such compound traf-
ficprocesses, called marked point processes [14],are
outside the scope of this article.

Discrete-time traffic processes correspond to the
case when time is slotted. Mathematically, thismeans
that the random variables 4, can assume only
integervalues, or equivalently, that the random vari-
ables N(r) are allowed to increase only at integer-
valued time instants 7,,.

Traffic processes are used to drive simulations
in several ways, all of which use one or more
pseudo-random number streams to generate
sequences of random variables via appropriate
transformations. To emphasize this point, we
shall use the term randomly generated to refer to
such computer-generated random sequences. In
the simplest case, a simulation only needs to
randomly generate a sequence of interarrival
times {4, }.

The traffic-generation mechanism that would be
contained in the event algorithms s straightforward.
Initially, the simulation clock is set to Ty=0. Next,
Ay is randomly generated and an arrival event is
scheduled for time 7| = A,. This arrival event is
placed on the chronologically-ordered event list
orcalendar. Eventually, that arrival event will become
the most imminent one, the simulation clock will
be set to 4, and that arrival event will be pro-
cessed. Arrival generation proceeds inductively.
At simulation time T, the nth arrival event is
processed, the next interarrival time A4,,, | is ran-
domly generated, and an arrival event is sched-
uled for simulation time T,,,; = T,+ A, and
soon. For compound traffic, the simulation randomly
generates a batch size B, (in addition to the inter-
arrival time A,,)), and implements the arrival of B,
units at simulation time T,. Most models call for
the sequences {4,} and {B,} to be stochastically
independent.

In addition to arrival times and batch sizes, it
is often useful (and sometimes essential) to incor-
porate the notion of workload into the traffic descrip-
tion. The workload is a general concept describing
the amount of work {W,,} brought to a system by
thentharriving unit; it is usually assumed independent
ofinterarrival times and batchsizes. A typical exam-
ple is the sequence of service time requirements
of arrivals at a queueing system, although in
queueing, one usually refers to the arrival process
alone as traffic. On the other hand, traffic reduces
to workload description when interarrival times
are deterministic. A case in point is compressed video,
also known as VBR (variable bit rate) video,
where coded frames (arrivals) have variable and
random size (bit rate), and these must be deliv-
ered deterministically every 1/30 of a second or
so, for high-quality video. The workload consists
of coded frame sizes (say, in bits), because frame
size is roughly proportional to its transmission
time (service requirement).

In this article, we describe generic models that
can be used to randomly generate any component
of traffic description, be it {4, }, {B,}, or {W,},
but we emphasize simple traffic, described by
{4,}. We also point out that different traffic
streams, corresponding to different telecommu-
nications services (voice, video, file transfer, etc.)
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can be superposed (multiplexed) to form a realistic
heterogeneous mixture of traffic.

Traffic Burstiness

A recurrent theme relating to traffic in broad-
band networks is the traffic “burstiness” exhibit-
ed by key services such as compressed video, file
transfer, etc. Burstiness is present in a traffic pro-
cess if the arrival points {7,} appear to form
visual clusters; that is, {4, } tends to give rise to
runs of several relatively short interarrival times fol-
lowed by a relatively long one. The mathematical
underpinning of burstiness is more complex. Two
main sources of burstiness are due to the shapes
of the marginal distribution and autocorrelation
function of {4,}. For example, burstiness would
be facilitated by a bimodal marginal distribution of
{A,}, or by short-term autocorrelations in {4,}.
Strong positive autocorrelations are a particularly
major cause of burstiness. Since there seems to be no
single widely-accepted notion of burstiness, we shall
briefly describe some of the commonly-used
mathematical measures that attempt to capture it.

The two simplest measures of burstiness take
account only of first-order properties of traffic (they
are each a function of the marginal distribution only
of interarrival times). The first one is the ratio of
peak rate to mean rate — a very crude measure,
which also has the shortcoming of dependence on
the interval length utilized for rate measurement.
A more elaborate measure of burstiness is the
coefficient of variation, defined as the ratio of
standard deviation to mean c4=06[A,]/E[A,] of
interarrival intervals.

In contrast, the peakedness measure [15]and the
index-of-dispersion measure [16] do take account
of temporal dependence in traffic (second-order
properties). Foragiven time interval of length 7, the
index of dispersion for counts (IDC) is the func-
tion I.(t)=Var[N(7))/E[N(1)}; i.e., the variance-
to-mean ratio of the number of arrivals in the interval
[0,7]. Since the number of arrivals is related to
the sum of interarrival intervals via Eq. (1), the
numerator of the IDCincludes the autocorrelations
of {4,,}. The peakedness conceptisrelated, but more
involved. Assume that the traffic stream {4,} is
offered to an infinite server group consisting of inde-
pendent servers with common service time distri-
bution F. Let S be the equilibrium number of
busy servers. The peakedness is the functional
24[F]=Var[S)/E[S], which maps a service time
distribution to a real number. A commonly used
peakedness is Zexp(0), obtained as a limiting case
for an exponential service distribution with service
rate approaching 0.

Finally, the Hurst parameter [40] can be used
as a measure of burstiness via the concept of self-
similarity. This notion is discussed in a following
section.

Renewal Traffic Models

Thissection introduces renewal traffic processes and
the important special cases of Poisson and
Bernoulli processes. Renewal models have a long
history, because of their relative mathematical
simplicity. In a renewal traffic process, the 4,, are
independent, identically distributed (IID), but their
distribution is allowed to be general. Unfortu-
nately, with few exceptions, the superposition of
independent renewal processes does not yield a

renewal process. The ones that do, however,
occupy a special position in traffic theory and
practice. Queueing models historically have rou-
tinely assumed a renewal-offered traffic.

Renewal processes, while simple analytically,
have a severe modeling drawback — the autocor-
relation function of {4,} vanishes identically for
all nonzero lags. The importance of capturing
autocorrelations stems from the role of the auto-
correlation function as a statistical proxy for tem-
poral dependence in time series. Moreover, recall
that positive autocorrelations in {4,;} can explain,
to a large extent, the phenomenon of traffic
burstiness. Bursty traffic is expected to dominate
broadband networks, and when offered to a
queueing system, it gives rise to much worse per-
formance (such as mean waiting times) as compared
torenewal traffic (which lacks temporal dependence);
see [17] for a detailed discussion. Consequently,
models that capture the autocorrelated nature of
traffic are essential for predicting the perfor-
mance of emerging broadband networks.

Poisson Processes — Poisson models are the
oldest traffic models, dating back to the advent of
telephony and the renowned pioneering tele-
phone engineer A. K. Erlang. A Poisson process
can be characterized as a renewal process whose
interarrival times {4,} are exponentially dis-
tributed with rate parameter A: P{4,, <t}=1-
exp (=Af) [13]. Equivalently, it is a counting pro-
cess, satisfying P{N(t)=n}=exp(-M)(A)"/n!, and
the number of arrivals in disjoint intervals is sta-
tistically independent (a property known as inde-
pendent increments).

Poisson processes enjoy some elegant analyti-
cal properties. First, the superposition of inde-
pendent Poisson processes results in a new
Poisson process whose rate is the sum of the
component rates. Second, the independent incre-
ment property renders Poisson a memoryless
process. This, in turn, greatly simplifies queueing
problems involving Poisson arrivals. Third, Pois-
son processes are fairly common in traffic appli-
cations that physically comprise a large number
of independent traffic streams, each of which
may be quite general. The theoretical basis for
this phenomenon is known as Palm’s Theorem
[18]. It roughly states that under suitable but mild
regularity conditions, such multiplexed streams
approach a Poisson process as the number of streams
grows, but the individual rates decrease soas tokeep
the aggregate rate constant. Thus, trafficstreams on
main communications arteries are commonly
believed to follow a Poisson process, as opposed
totrafficonupstream tributaries, which are less like-
ly to be Poisson. However, traffic aggregation
(multiplexing) need not always result in a Poisson
stream. A counter-example is provided in the sec-
tion on self-similar traffic models that follows.

Time-dependent Poisson processes are defined
by letting the rate parameter A depend on time. Com-
pound Poisson processes are defined in the obvi-
ous way, by specifying the distribution of the
batch size, By, independent of the 4,,.

Bernoulli Processes — Bernoulli processes arc the
discrete-time analog of Poisson processes (time-
dependent and compound Bernoulli processes
are defined in the natural way). Here the probability
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of an arrival in any time slot is p, independent
of any other one. It follows that for slot k, the
corresponding number of arrivals is binomial,
P{N; = n}=(5p”(1 -p)%-7, n between 0 and k.
The time between arrivals is geometric with
parameter p: P{4,=j}=p(1 - p)/, j being a non-
negative integer.

Phase-type Renewal Processes — Animportant
special case of renewal models occurs when the inter-
arrival times are of the so-called phase type.
Phase-type interarrival times can be modeled as the
time toabsorption ina continuous-time Markov pro-
cess C={C(r)}7=( with state space {0,1,...,m};
here, state Qs absorbing, all other statesare transient,
and absorption is guaranteed in a finite time. To
determine A,,, start the process C with some ini-
tial distribution 7. When absorption occurs (i.e., when
the process enters state 0), stop the process. The
elapsed time is 4,,, which implies that it is a prob-
abilistic mixture of sums of exponentials. Then, restart
with the same initial distribution 7 and repeat the
procedure independently to get 4, ;.

Phase-type renewal processes give rise to rela-
tively tractable traffic models. They also enjoy the
property that any inter-arrival distribution can be
approximated arbitrarily closely by phase-type
distributions.

Markov and Markov-Renewal Traffic
Models

Unlike renewal traffic models, Markov and
Markov-renewal traffic models introduce depen-
dence into the random sequence {4,,} [13]. Con-
sequently, they can potentially capture traffic
burstiness, because of nonzero autocorrelations
in{4,}.

Consider a continuous-time Markov process
M={M(1)};=owithadiscrete state space. In thiscase,
M behaves as follows: it stays in a state i for an
exponentially distributed holding time with
parameter ;, which depends oni alone; it then jumps
to state j with probability p;;, such that the matrix
P=(p;]isaprobability matrix {13]. Inasimple Markov
traffic model, each jump of the Markov process is
interpreted as signaling an arrival, so interarrival
times are exponential, and their rate parameters
depend on the state from with the jump occurred.
Thisresultsindependence among interarrival times
as a consequence of the Markov property.

Markovmodelsinslotted time can be defined for
the process {4, } in terms of a Markov transition
matrix P=[p;][13]. Here, statei corresponds toi idle
slots separating successive arrivals, and pj;isthe prob-
ability of a j-slot separation, given that the previ-
Ous one was an i-slot separation. Arrivals may be
single units, a batch of units, or a continuous
quantity. Batches may themselves be described by
aMarkov chain, whereas continuous-state, discrete-
time Markov processes can model the (random)
workload arriving synchronously at the system. In
all cases, the Markov property introduces depen-
dence into interarrival separation, batch sizes and
successive workloads, respectively.

Markov-renewal models are more general
than discrete-state Markov processes, yet retain a
measure of simplicity and analytical tractability.
A Markov renewal process R= {Mp,t,) 5 is
defined by a Markov chain {M,,} and its associat-
ed jump times {1, }, subject to the following con-

straint: the pair (M,,,,7,+;) of next state and
inter-jump time depends only on the current state
M, but not on previous states nor on previous
inter-jump times. Again, if we interpret jumps (tran-
sitions) of {M,} as signaling arrivals, we would
have dependence in the arrival process. Also, unlike
the Markov process case, the interarrival times
canbe arbitrarily distributed, and these distributions
depend on both states straddling each interarrival
interval [13].

The Markovian Arrival Process (MAP) is abroad
and versatile subclass of Markov renewal traffic pro-
cesses, enjoying analytical tractability [19].Here, the
interarrival times are phase-type but with a wrin-
kle: traffic arrivals still occur at absorption
instants of the auxiliary Markov process M, but
the latter is not restarted with the same initial dis-
tribution; rather, the restart state depends on the
previous transient state from which absorption
hadjust occurred. While MAPis analytically simple,
it enjoys considerable versatility. Its formulation
includes Poisson processes, phase-type renewal pro-
cesses, and others as special cases [19]. It also
has the appealing propertythatthe superposition of
independent MAP traffic streams results in a
MAP traffic stream governed by a Markov pro-
cess whose state space is the cross product of the
component state spaces.

Markov-Modulated Traffic Models

Markov-modulated models constitute an extreme-
ly important class of traffic models. The idea is to
introduce an explicit notion of state into the descrip-
tion of a traffic stream — an auxiliary Markov
process is evolving in time and its current state
controls (modulates) the probability law of the
traffic mechanism.

Let M={M(r)};~ be a continuous-time Markov
process, with state space {1,2,...m} (more com-
plicated state spaces are possible). Now assume that
while M is in state k, the probability law of traffic
arrivalsis completely determined byk, and this holds
for every 1 < k < m. Note that when M under-
goes a transition to, say, state j, then a new proba-
bility law for arrivals takes effect for the duration
of state j, and so on. Thus, the probability law for
arrivals is modulated by the state of M (such sys-
tems are also called doubly stochastic, but the
term “Markov modulation” makes it clearer that the
traffic is stochastically subordinated to M).

The modulating process certainly can be more
complicated than a continuous-time, discrete-
state Markov process (so the holding times need not
be restricted to exponential random variables),
but such models are far less analytically tractable.
For example, Markov Renewal-modulated processes
constitute a natural generalization of Markoy-mod-
ulated processes with generally-distributed inter-
arrival times, but those will not be reviewed here.

Markov-Modulated Poisson Processes —
The most commonly used Markov-modulated model
is the Markov-Modulated Poisson Process (MMPP)
model, which combines the simplicity of the mod-
ulating (Markov) process with that of the modulated
(Poisson) process. In this case, the modulation mech-
anism simply stipulates that in state & of M,
arrivals occur according to a Poisson process at
rate A;. As the state changes, so does the rate.
MMPP models can be used in a number of ways.
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Consider first a single traffic source with a vari-
able rate. A simple traffic model would quantize
the rate into a finite number of rates, and each
rate would give rise to a state in some Markov
modulating process. It remains to verify that
exponential holding times of rates are an appropriate
description, but the Markov transition matrix
Q=[Qy] of the putative M can be easily estimat-
ed from empirical data: simply quantize the
empirical data, and then estimate Qy; by calculat-
ing the fraction of times that M switched from
state k to state J.

Asasimple example, consider a two-state MMPP
model, where one state is an “on” state with an
associated positive Poisson rate, and the other is
an “off” state with associated rate zero (such
models are also known as interrupted Poisson for
obvious reasons). These models have been widely
used to model voice traffic sources [20]; the “on”
state corresponds to a talk spurt (when the speak-
er emits sound), and the “off” state corresponds
to a silence (when the speaker pauses for a break).
This basic MMPP model can be extended to
aggregations of independent traffic sources, each
of which is an MMPP, modulated by an individu-
al Markov process M;, as described previously.
Let J(£)=(J1(£)J2(t),....J,(1)), where Ji(1) is
the number of active sources of traffic type i,
and let M(t)=(M(£),M;(t),.. . M,(t)) be the cor-
responding vector-valued Markov process taking
values on all r-dimensional vectors with non-neg-
ative integer components. The arrival rate of
class i traffic in state (jy,jz,...j,) of M(t) is jiA;.

Transition-Modulated Processes — Transi-
tion-modulated processes are a variation on the
state modulation idea. Essentially, the modulat-
ing agent is a state transition rather than a state
per se. A state transition, however, can be
described simply by a pair of states, whose com-
ponents are the one before transition and the one
after it.

The generalization of a transition-modulated
traffic model to continuous time is straightfor-
ward (the model in discrete time is described in
[21]). Let M={M(r) }7=( be a discrete-time Markov
process on the positive integers. State transitions
occur on slot boundaries, and are governed by
an m x m Markov transition matrix @=[Q;].
Let B, denote the number of arrivals
in slot n, and assume that the probabilities
P{B,=k|M,=i,M,1=j}=t;(k), are indepen-
dent of any past state information (the parame-
ters #;(k) are assumed given). Notice that these
probabilities are conditioned on transitions,
(M,;,M,,+1), of M from state M, to state M,, 4,
during slot n. Furthermore, the number of traffic
arrivals during slot n is completely determined by
the transition of the modulating chain (through
the parameters #;(k)).

Markov-modulated traffic models are a special
case of Markovian transition-modulated ones:
simply take the special case when the condition-
ing event is {M,,=i}. That is, t;;(k)=t;(k) depends
only on the state i of the modulating chain in slot
n,butisindependent of its state j in the nextslotn+1.
Conversely, Markovian transition-modulated
processes can be thought of as Markov-modulat-
ed ones, but on a larger state space. Indeed, if
{M,} is Markov, so is the process {(M,,M,+1)}

of its transitions.

As before, multiple transition-modulated traffic
models can be defined, one for each traffic class of
interest. The complete traffic model is obtained as
the superposition of the individual traffic models.
For queueing studies in discrete time, anotherwrin-
kle is the assignment of priorities to different
classes, so as to order their arrivals in a buffer [21].

Fluid Traffic Models

The fluid traffic paradigm dispenses with individ-
ual traffic units. Instead, it views traffic as a
stream of fluid, characterized by a flow rate (such
as bits per second), so that a traffic count is
replaced by a traffic volume.

Fluid models are appropriate to cases where indi-
vidual units are numerous relative to a chosen
time scale. In other words, an individual unit is by
itself of little significance, just as one molecule
more or less in a water pipeline has but an infinites-
imal effect on the flow. In the B-ISDN context of
ATM, all packets are fixed-size cells of relatively
short length (53 bytes); in addition, the high trans-
mission speeds (say, on the order of a gigabit per
second) render the transmission impact of an
individual cell negligible. The analogy of a cell to
a fluid molecule is a plausible one. To further
highlight this analogy, contrast an ATM cell with
a much bigger transmission unit, such as a coded
(compressed) high-quality video frame, which
may consist of a thousand cells. A trafficarrival stream
of coded frames should be modeled as a discrete
stream of arrivals, because such frames are typi-
cally transmitted at the rate of 30 frames per sec-
ond. A fluid model, however, is appropriate for
the constituent cells.

Although an important advantage of fluid
modelsis their conceptual simplicity, important ben-
efits will also accrue to a simulation model of
fluid traffic. As an example, consider again a
broadband ATM scenario. If one is to distinguish
among cells, then each of them would have to
count as an event. The time granularity of event
processing would be quite fine, and consequently,
processing cell arrivals would consume vast CPU
and possibly memory resources, even on simulat-
ed time scales of minutes. A statistically meaning-
ful simulation may often be infeasible. In contrast,
a fluid simulation would assume that the incom-
ing fluid flow remains (roughly) constant over
much longer time periods. Traffic fluctuations are
modeled by events signaling a change of flow rate.
Because these changes can be assumed to happen
far less frequently than individual cell arrivals,
one can realize enormous savings in computing.
In fact, infeasible simulations of cell arrival mod-
els can be replaced by feasible simulations of
fluid models of comparable accuracy. In a queue-
ing context, it is easy to manipulate fluid buffers.
Furthermore, the waiting time concept simply
becomes the time it takes to serve (clear) the current
buffer, and loss probabilities (at a finite buffer) can
be calculated in terms of overflow volumes.
Because fluid models assume a deterministic service
rate, these statistics can be readily computed.
Typically, though, larger traffic units (such as
coded frames) are of greater interest than indi-
vidual cells. Modeling the larger units as discrete
traffic and their transport as fluid flow would give
us the best of both worlds: we can measure wait-
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ing times and loss probabilities and enjoy savings
on simulation computing resources.

Typical fluid models assume that sources are
bursty — of the “on-off” type [22, 23]. While in
the “off” state, traffic is switched off, whereas in
the “on” state traffic arrives deterministically at a
constant rate A. For analytical tractability, the
duration of “on” and “off” periods are assumed
to be exponentially distributed and mutually
independent (that s, they form an alternating renew-
al process). A Markov model of a set of quan-
tized (fluid) traffic rates is presented in [24].
Fluid traffic models of these types can be ana-
lyzed as Markov-modulated constant rate traffic.
The host of generalizations, described above for
MMPP, carries over to fluid models as well,
including multiple sources and multiple classes of
sources.

Autoregressive Traffic Models

Autoregressive models define the next random vari-
able in the sequence as an explicit function of
previous ones within a time window stretching
from the present into the past. Such models are
particularly suitable for modeling VBR-codedvideo-a
projected major consumer of bandwidth in emerg-
ing high-speed communications networks. The nature
of video frames is such that successive frames
within a video scene vary visually very little (recall
that there are 30 frames per second in a high-
quality video). Only scene changes (and other
visual discontinuities) can cause abrupt changes
in frame bit rate. Thus, the sequence of bit rates
(frame sizes) comprising a video scene may be
modeled by an autoregressive scheme (later, we
describe another modeling approach), while
scene changes can be modeled by some modulat-
ing mechanism, such as a Markov chain.

Linear Autoregressive Models — The class of lin-
ear autoregressive models [25] has this form:

X,=a +ia,X,,_,+e,, n>0, (2)

where X, .. .,Xp_1are prescribed random variables,
the a, are real constants, and the ¢, are zero-
mean, IID random variables, called residuals, which
are independent of the X,

Eq. 2 describes the simplest form of a linear autore-
gression scheme, called AR(p), where p is the
order of the autoregression. In a good model, the
residuals ought to be of a smaller magnitude than
the X;,, in order to “explain” the empirical data.

The recursive form in Eq. 2 makes it clear how
to randomly generate the next random element in
the sequence {X,};~o from a previous one: this
simplicity makes AR schemes popular candidates
for modeling autocorrelated traffic. A simple AR(2)
modelhasbeenused tomodel variable bit rate (VBR)
codedvideo[26]. More elaborate models can be con-
structed out of AR(p) models combined with
other schemes. For example, video bit rate traffic
wasmodeled asasum, R, =X, +Y,+K,C,, where the
first two terms comprise independent AR(1) schemes
and the third term is a product of a simple Markov
chain and an independent normal variate from an
IID normal sequence [27]. The purpose of having
two autoregressive schemes was to achieve a bet-
ter fit to the empirical autocorrelation function;
the third term was designed to capture sample

path spikes due to video scene changes.

More complicated models, such as MA,ARMA,
and ARIMA are outside the scope of this article [25 ]
Autoregressive models are typically used to fit
the empirical autocorrelation function, but they can-
not generally fit the empirical marginal distribution.

TES Models — Transform-expand-sample (TES)
models provide another modeling approach
geared toward capturing both marginals and
autocorrelations of empirical records simultane-
ously [28, 29, traffic included [30]. The empirical
TES methodology assumes that some stationary
empirical time series (such as traffic measure-
ments over time) is available. It aims to construct
amodelsatisfying the following three fidelity require-
ments, simultaneously:

* The model’s marginal distribution should match
its empirical counterpart (a histogram, in prac-
tice).

* The model’s leading autocorrelations should
approximate their empirical counterparts up to
a reasonable lag.

* The sample path realizations (histories) gener-
ated by simulating the model should “resem-
ble” the empirical records.

The first two are precise quantitative require-
ments, whereas the third is a heuristic qualitative
one. Nevertheless, it is worth adopting this sub-
jective requirement and keeping its interpretation
at the intuitive level; after all, common sense tells
us that if a model gives rise to time series which
are entirely divorced in “appearance” from
observed ones, then this would weaken our confi-
dence in the model, and vice versa.

TES processes come in two flavors: TES* and
TES™. The superscript (plus or minus) is a
mnemonic reminder of the fact that they give rise
to TES processes with positive and negative lag-1
autocorrelations, respectively. TES models con-
sist of two stochastic processes in lockstep, called
background and foreground sequences, respectively.
Background TES sequences have this form:

n even

= - ur,
U: U, n=0 Un =/ ‘
W,y n0 Uy, n odd

Here, Upis distributed uniformly on [0,1); {V, o=
is a sequence of IID random variables, indepen-
dentof Uy, called the innovation sequence, and angu-
lar brackets denote the modulo-1 (fractional
part) operator (x) =x — max{integer n: n < x}.
Background sequences play an auxiliary role. The
real target are foreground sequences:

X3=DWUY), X3=DU}) ,

where D is a transformation from [0,1) to the
reals, called a distortion.

It can be shown that all background sequences
are Markovian stationary, and their marginal dis-
tribution is uniform on [0,1), regardless of the
probability law of the innovations {V,.}[28]. How-
ever, the transition structure {U} } is time invariant,
while that of {U} is time dependent. The inver-
sion method allows us to transform any back-
ground uniform variates to foreground ones with
an arbitrary marginal distribution [31]. To illus-
trate this idea, consider an empirical time series
Y={Y,}_0, from which one computes an empir-
ical density Ay and its associated distribution
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M Figure 2.4 TEStool screen displaying a TES multiplex model of MPEG-compressed VBR video.

function Hy. Then, the random variable X=H 7/
(Uyhasdensity hy. Thus, TES foreground sequences
can match any empirical distribution.

The empirical TES methodology actually employs
a composite two-stage distortion:

DY’E(X) ZI:I;/I (Si("))9 Xe [011] >

where A7 is the inverse of the empirical his-
togram distribution based on Y, and S¢ is a
“smoothing” operation, called a stitching trans-
formation, parameterizedby0< &< 1,and givenby:

S00={0/%

(=) 70-8),

0<y<§
E<y<i

For 0 < § < 1, the effect of S¢ is to render the
sample paths of background TES sequences
more “continuous-looking.” Because stitching
transformations preserve uniformity, the inversion
method ViaH}1 guarantees that the correspond-
ing foreground sequence would have the prescribed
marginal distribution Hy. The empirical TES
modeling methodology takes advantage of this
fact which effectively decouples the fitting require-
ments of the empirical distribution and the empir-
ical autocorrelation function. Because the former
is automatically guaranteed by TES, one can con-
centrate on fitting the latter. This is carried out
by a heuristic search for a pair (§,}/) , where £ is a
stitching parameter and fy is an innovation densi-
ty; the search is declared a success on finding that
the corresponding TES sequence gives rise to an
autocorrelation function that adequately approxi-
mates its empirical counterpart, and whose simu-
lated sample paths bear “adequate resemblance” to
their empirical counterparts.

In practice, efficient searches of this kind must
rely on software support. TEStool is a visual
interactive software environment designed to
support TES modeling [32]. TEStool allows the user

to read in empirical time series and calculate
their empirical statistics (histogram, autocorrela-
tion function, and spectral density) in textual and
graphical forms. It further provides services to
generate and modify TES models and to super-
impose the corresponding TES statistics on their
empirical counterparts. The search proceeds in
an interactive style, guided by visual feedback:
eachmodel modification triggers a recalculation and
redisplay of the results. TES-model autocorrelations
and spectral densities are calculated numerically
from fast and accurate formulas developed in [28,
29]. This activity is further simplified by restrict-
ing the innovation densities fy, to be step func-
tions. Such simple densities can be readily
modified graphically, because steps are visually rep-
resented by rectangles that can be created, delet-
ed, stretched, and moved easily with a mouse. A
TES-modeling algorithm has been recently devel-
oped (based on nonlinear optimization) that has
been shown to perform better and faster as com-
pared to human heuristic search.

Stationary TES models canbe combined to yield
non-stationary composite ones. MPEG-codedvideo
is a case in point [33]. It consists of three kinds of
frames (called I-frames, P-frames, and B-Frames),
interleaved in a deterministically repeating
sequence (the basic cycle starts with an I-frame
andendsjustshort of the next I-frame). Consequently,
MPEG-coded VBR video is nonstationary, even if
the corresponding I, P, and B subsequences of frames
are stationary. A composite TES model can be
obtained by modeling the I, B, and P subsequences
separately, and then multiplexing the three streams
in the correct order [50]. The resulting multiplexed
TES model obtained from the corresponding
TES models of the subsequences, but with auto-
correlationinjected into frameswithin the same cycle,
areshown in Fig. 2, which includes a TEStool screen
sub-divided into four canvas areas displaying var-
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ious types of empirical statistics (bullets) against their
TES model counterparts (diamonds). The upper-
left canvas contains the empirical and TES model
sample paths, the latter being generated by simu-
lation; the upper-right canvas contains the corre-
sponding histograms; the lower-left and lower-right
canvases contain, respectively, the empirical auto-
correlation function and spectral density plotted
against their simulation-based TES model coun-
terparts. Although the autocorrelation functions and
spectral densities were formally computed from a
single sample path as if the MPEG sequences
were stationary, and therefore represent averaged
estimates of different correlation coefficients,
they nevertheless give an indication of how well the
composite TES model captured temporal dependence
inthe empirical data, because they were all computed
fromsample paths in the same way. The general good
agreement between the TES model statistics and
their empirical counterpartsisin accord with the three
fidelity requirements stipulated at the beginning
of thissection. These TES source modelscanbe used
to generate synthetic streams of realistic traffic to
drive simulations of communications networks.

Self-Similar Traffic Models

Recent studies of high-quality, high-resolution traf-
fic measurements have revealed a new phe-
nomenon with potentially important ramifications
to the modeling, design, and control of broad-
band networks. These include an analysis of hun-
dreds of millions of observed packets over an Ethernet
LAN ina R & D environment [34], and an analy-
sis of a few millions of observed frame data gen-
erated by VBR video services [35]. In these
studies, packet traffic appears to be statistically
self-similar [36]. A self-similar (or fractal) phe-
nomenon exhibits structural similarities across all
(or at least a wide range) of time scales. In the
case of packet traffic, self-similarity is manifested
in the absence of a natural length of a burst: at
every time scale ranging from a few milliseconds
to minutes and hours, similar-looking traffic
bursts are evident. Self-similar stochastic models
include fractional Gaussian noise [37] and fractional
ARIMA processes [38].

Self-similarity manifests itself in a variety of
differentways: aspectral density that diverges at the
origin (1/f*- noise,0< o <1),anon-summable auto-
correlation function (indicating long-range
dependence), and a variance of the sample mean
that decreases (as a function of the sample size n)
more slowly than 1/z [39]. The key parameter
characterizing these phenomena is the so-called
Hurst parameter, H, which is designed to capture
the degree of self-similarity in a given empirical record
[40] as follows. Let {Y;}7_; be an empirical time
series with sample mean Y(n) and sample vari-
ance $%(n). The rescaled adjusted range, or R/S statis-
tic, is given by R(n)/S(n) with:

R(N):max{zf‘: (Yi-Y(m)15k Sn}
—-min{z:;] (Yi - ?(n)):l Sk< n} .

It has been found empirically that many naturally
occurring time series appear to obey the relation:

E[R(n) / S(n)]=n*, n large ,

with a H typically about 0.73. On the other hand,
for renewal and Markovian sequences, it can be shown
that the previous equation holds with H=0.5, for
large n [37). This discrepancy, generally referred
to as the Hurst phenomenon, is a measure of the
degree of self-similarity in time series, and can be
estimated from empirical data [35].

From a mathematical point of view, self-simi-
lar traffic differs from other traffic models in the fol-
lowing way [39]. Let s be a time unit representing
a time scale, such as s = 10 seconds (m=0,t1,+
2, ...). For every time scale s, let X )= {x{®)}
denote the time series computed as the number
of units (packets, bytes, cells, etc.) per time unit s
in the traffic stream. Traditional traffic models
have the propertythat, as s increases, the “aggregated”
processes, X , tend to a sequence of IID ran-
dom variables (covariance stationary white noise).
On the other hand, the corresponding aggrega-
tion procedure of empirical traffic data yields
time series X, which reveal two related types of
behavior, when plotted against time. They either
appear visually indistinguishable from one anoth-
er (“exactly self-similar”) but distinctively differ-
ent from pure noise, or they converge to a time series
with a nondegenerate autocorrelation structure
(“asymptotically self-similar”). In contrast, simu-
lationsof traditional traffic models, rapidly converge
towhite noise after increasing the time scale by about
2 or 3 orders of magnitude. Similarly, when trying
to fit traditional traffic models to self-similar traf-
ficdata, the number of parameters required typically
grows, as the sample size increases. In contrast,
self-similar traffic models are able to capture the
observed fractal nature of packet traffic in a par-
simonious manner (with about 1 to 4 parame-
ters). Parameter estimation techniques are
available for many self-similar models, as well as
Monte Carlo methods for generating long traces
of synthetic self-similar traffic [35).

Potential implications of self-similar traffic on
issues related to design, control, and performance
of high-speed, cell-based networks are currently
under study. For example, it can be shown that many
of the commonly used measures for burstiness do
notcharacterize self-similar traffic[34]. Contraryto
commonly held beliefs that multiplexing traffic
streams tends to produce smoothed out aggre-
gate traffic with reduced burstiness, aggregating
self-similar traffic streams can actually intensify
burstiness rather than diminish it [34]. From a
practical vantage point, there are also indications
that traffic congestion in self-similar networks
may have broadly differing characteristics from those
produced by traditional trafficmodels. Comparisons
of queueing performance under self-similar ver-
sus traditional traffic scenarios are currently
being studied.

Rare-Event Simulation

With the improved reliability of telecommu-
nications networks, rare events have become
an increasingly important ingredient of quality-
of-service (QoS) metrics. The most common
example is cell loss in ATM systems. The desired cell
loss probability in such networks is in the range of
10-6 to 10-12, depending on the application. This
impliesthat 107 to 10!3 statistically independent cells
must be simulated to obtain estimates with reasonable
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statistical confidence. Much longer simulations may
be needed if the cell losses are autocorrelated as
is the usual case with bursty traffic. Consequent-
ly, it is computationally costly to use conventional
simulation techniques. This computational limita-
tion is evident in most simulation studies of ATM
systems where the lowest reported loss probabili-
tyisusually around 10-6to 10-5. Two techniques have
been proposed to deal with rare events in a
telecommunications networking context: impor-
tance sampling (IS)[41] and the generalized extreme
value theory (GEVT)[42], both of which have
been successfully applied to elements of B-ISDN
systems. Obtaining simulation-based perfor-
mance predictions for large complex networks is still
problematic, however; distributed processing and
time-warping are other approaches that should
be considered for large systems. (See [11]in thisissue
for a discussion of these techniques.)

The IS technique [43, 44] is a well-known sta-
tistical adjunct to simulation with a record of suc-
cessful use incommunications link and radar system
design[45,46]. Compared with conventional Monte
Carlo simulation, IS may reduce the computa-
tional time by orders of magnitude.

The basic principle of IS is straightforward.
Let L(x) be a function from real vectors to real
numbers, and X a real random vector, so that
L(X) is a random variable. Let p(®)(x) and p(x) be
two distinct joint probability density functions
(pdf), where p(x) is obtained by modifying or
biasing p(°)(x). The essence of IS is the ability
under suitable conditions to force the random
variable L(X) to have the same mean with respect
to p©)(x) as L(X)*W(X) has with respect to p(x),
where W(x) is a weighting function. The equiva-
lent representations have this form:

EILOO] = Lep) e = | Leywop@d

where fdx is shorthand for multiple integration.

The pdf p©)(x) is referred to as the reference
density, p(x) as the biased density, and the change
from p(©)(x) to p(x) is commonly called a changed
measure. In order to maintain equality in the
above equation, the weighting function W(x)
must satisfy:

Wx) = p© (x)/ p(x),

provided p(®)(x) is zero whenever p(x) is zero.
Note that p(©)(x) is generally determined by a
specific application but p(x) can be any pdf that
satisfies the above condition. The point of performing
a change of measure is that even though L(X)
under p(@)(x), and L(X) * W(X) under p(x), have
the same mean, their variances may be different.
A significant variance reduction is possible if p(x)
is chosen properly; on the other hand, the vari-
ance can be inadvertently increased if an inap-
propriate biased pdf is selected. The fundamental
idea behind the IS technique is to modify the
probabilities that govern the outcomes of the
simulation in such a way that the original low-
probability events, governed by the reference pdf,
occur more frequently under the biased pdf. That is,
instead of simulating low-probability events
under the reference pdf (requiring long simula-
tion runs), we simulate relatively high-probability
events under an appropriate biased pdf (requir-

L

B Figure 3. Importance sampling: blocking probability vs. buffer size. (Single
server; eight biased sources with total load of 0.35 and burstiness of 8; eight

unbiased sources with total load of 0.15 and burstiness of 4; run length: 5000

regenerative cycles; exponential bias with bias choice based on normalized

sample variance.)

ing shorter simulation runs), and the results are
weighted to compensate for the bias.

For networking applications, IS is usually applied
in a regenerative setting, which assumes that tar-
getrandomvariables defined over successive regen-
erative cycles are statistically independent and
identically distributed [47]. IS was used in the
simulation of ATM systems [41] where the IS
bias was applied to the reference-conditional cell
arrival probabilities, Pg;ﬂ) defined as:

Pl(].”)= P(j cells arrive in the current slot | i arrived
in'the previous slot).

A geometric bias of this form:

( ejl)go)
PP=——  fori,j=0,.,N
P T RO fori,j=0,
where 6 is the bias parameter and K(i)is a nor-
malization factor, was proposed in [41]. A geometric
bias was selected for several reasons: it is a one-
parameter function with a particularly simple
form, it has a fast rate of change, and for some
simple systems, the optimal IS bias has an exponential
form determined by large-deviation theory [48].
To keep the lengths of the regenerative cycles
finite during the execution of this IS simulation
procedure, the geometric bias was applied from
the beginning of each regenerative cycle up until the
occurrence of the first blocking event, at which point
the transition probabilities were reset to their ref-
erence values. This procedure yielded computational
improvement by a factor of 106 (Fig. 3) when esti-
mating a cell loss probability of 10-13 for an ATM
queueing model with heterogeneous traffic (a
mixture of two groups of MMPP traffic sources).
Selection of the bias parameters presents the main
problem with the IS methodology. Statistical
optimization techniques of the bias parameters in
IS are viable alternatives to analytical optimiza-
tion methods [49]. These techniques use statisti-
cal estimates, either of simulation variance, or of
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B Figure 4. Importance sampling with optimized bias parameters.

gradients of the variance in order tofind a near-opti-
mal set of bias parameter values. Some cases of
statistical optimization of the IS parameters have
produced speedup factorsranging from 2 to 11 orders
of magnitude for a number of communications
systems at both the physical and network levels,
including complex systems such as 16 x16 Clos ATM
switches [49]. A M-IBP+MMBBP/1/D/K queue-
ing system (M-IBP is modified interrupted
Bernoulli process and MMBBP is Markov modu-
lated Bernoulli process with batches) was simu-
lated with statistically optimized IS parameters in
[49]; such models can be used to represent the
first of several nodes in an ATM network, where
the M-IBP traffic represents the stream under obser-
vation (e.g., aspecific virtual circuit), and the MMBBP
process represents the cross traffic (aggregation
of all the other virtual circuits through the same node).
A plot of blocking probabilities and speedup fac-
tors for this queueing model asa function of the buffer
size, K, for two different values of the squared
coefficient of variation, 1.1 and 26.9, representing
different levels of traffic burstiness, is shown in
Fig. 4 [49].

Conclusion

he advent of broadband networks is ushering

ina Communications Age characterized by wide
availability of new and varied services such as
full-motion video-on-demand. The ensuing vari-
ety and ubiquity are spawning, in turn, ever more
complex networks. Concomitant with these devel-
opments, telecommunications professionals are being
called upon to design and manage an assortment
of communications systems in the face of fast-
moving technology and a climate of increasing
customer expectations. Against this backdrop,
analysts are frequently faced withincomplete knowl-
edge of user demands, as well as uncertainty
about the future evolution of these systems. If
B-ISDN is to keep the promise of ubiquity, con-
venience, affordability, and reliability, accurate

system models must be devised that are capable
of yielding acceptably precise performance pre-
dictions in a reasonable amount of time.

Monte Carlo Simulation provides a powerful
generic modeling methodology for predicting the
performance of both extant systems under new
scenarios, as well as of new systems currently
being designed. Simulation models can be used
(or abused) in designing and managing communi-
cation networks. Simulation per se, however, is
not a panacea: its efficacy depends, of course, on the
degree of fidelity incorporated into the simulated
models. In particular, effective performance eval-
uation requires that special care be taken in mod-
eling telecommunications traffic and the
corresponding demands for network resources. The
diverse traffic mixes planned for B-ISDN and the
burstiness of some new services (such as compressed
video) present formidable modeling challenges.

Needless to say, poor predictions invariably
lead to inappropriate design and management
decisions, which in addition to impacting users in
tangible adverse ways, can also bring about a
sense of disappointment and a perception that
the new technology is being “oversold” to the
public. As a glaring example we cite failure to account
for autocorrelationsin observed traffic; this typically
results in over-optimistic performance predic-
tions, which can easily deviate from observed per-
formance by orders of magnitude.

We hope this review of generic modeling tech-
niques, aswell as specificmodels germane to emerg-
ing B-ISDN telecommunications networks, will serve
to inform performance analysts of recent develop-
ments in trafficmodeling and alert them to the poten-
tial pitfalls in modeling B-ISDN.

Acknowledgments

We are grateful to Walter Willinger for providing
the material on self-similar traffic models and for
a careful reading of the manuscript. Thanks are
due to D. L. Jagerman and B. Sengupta for valu-
able discussions of traffic models and to K.
Townsend for providing Fig. 4.

References

[1] A. M. Law and M. G. McComas, “Simulation Software for Commu-
nications Networks: The State of the Art,” in this issue.

[2] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis,
Second Edition, (New York, NY: McGraw-Hill Inc., 1991).

[3]1C. H. Sauer and E. A. MacNair, Simulation of Computer Communication
Systems, (Englewood Cliffs, NJ: Prentice-Hall, 1983).

[4] M. Pidd, Computer Simulation in Management Science, (New York,
NY: John Wiley and Sons, 1984).

[SIW. G. Bulgren, Discrete System Simulation, (Englewood Cliffs, NJ: Pren-
tice-Hall, 1982).

[6] A. Pritsker, Introduction to Simulation and SLAM 11, (New York, NY:
John Wiley and Sons, 1984).

[7] R. E. Shannon, Sy imulation, (Engl d Cliffs, NJ: Prentice-
Hall, 1975).

[8] C. H. Sauer and E. A. MacNair, Simulation of Computer Communi-
cations Systems, (Englewood Cliffs, NJ: Prentice-Hall, 1983).

(9] A. M. Law and C. S. Larmey, “An Introduction to Simulation Using
SIMSCRIPT I1.5,” C.A.C.l, Los Angeles, CA, 1984.

{10] R. Jain, The Art of Computer Systems Performance Analysis, (New
York, NY: John Wiley and Sons, 1991).

[11] B. W. Unger, Douglas ). Goetz, and Stephen W. Maryka, “Simula-
tion of $57 Common Channel Signaling,” in this issue.

[12] G. S. Fishman, Principles of Discrete Event Simulation, (New York,
NY: John Wiley and Sons, 1978).

{13] E. Cinlar, Introduction to Stochastic Processes, (Englewood Cliffs,
NJ: Prentice-Hall, 1975).

[14] P. Franken, D. Koenig, U. Arndt, and V. Schmidt, Queues and
Point Processes, (Berlin: Akademie-Verlag, 1981).

(15} A. E. Eckberg, “Generalized Peakedness of Teletraffic Processes,”
Tenth International Teletraffic Conference, Montreal, Canada,
1983.

[16] K. Fendick and W. Whitt, “Measurements and Approximations to

80

IEEE Communications Magazine * March 1994



Describe the Offered Traffic and Predict the Average Workload in
aSingle-Server Queue,” Proceedings of the IEEE, vol. 77,171-1 94,1989.

{17] M. Livny, B. Melamed, and A. K. Tsiolis, “The Impact of Autocor-
relation on Queuing Systems,” Management Science, vol. 39, no.
3, 1993, pp. 322-339.

[18] H. J. Larson and B. O. Shubert, Probabilistic Models in Engineer-
ing Sciences, (New York, NY: John Wiley and Sons, 1979).

[19] D. M. Lucantoni, K. S. Meier-Helistern, and M. F. Neuts, “A Single-
Server Queue with Server Vacations and a Class of Non-Renewal Arrival
Processes,” Adv. Appl. Prob., vol. 22, 1990, pp. 676-705.

[20] H. Heffes and D.M. Lucantoni, “A Markov Modulated Characterization
of Packetized Voice and Data and Related Statistical Multiplexer
Performance,” IEEE J. on Selected Areas in Commun., SAC-4,
1986, pp. 856-886.

[21] T. Takine, B. Sengupta, and T. Hasegawa, “An Analysis of a Dis-
crete-Time Queue for Broadband ISDN with Priorities Among Traf-
fic Classes,” JEEE Trans. on Commun., to be published.

[22] D. Anick, D. Mitra, and M. M. Sondhi, "Stochastic Theory ofa
Data-Handling System with Multiple Sources,” The Bell System
Technical Journal, vol. 61, no. 8, 1982, pp. 1871-1894.

[23] H. Kobayashi and Q. Ren, “A Mathematical Theory for Transient
Analysis of Communications Networks,” IEICE Trans. on Com-
mun., vol. E75-B, no. 12, 1992, pp. 1266-1276.

[24] P. Sen et al., "Models for Packet Switching of Variable-Bit-Rate
Video Sources,” J. on Selected Areas in Commun., vol. 7, no. 5,
1989, pp. 865-869.

[25] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting
and Control, (Englewood Cliffs, NJ: Prentice-Hall, 1976).

[26] D. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical Analy-
sis and Simulation Study of Video Teletraffic in ATM Networks,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 2,
1992, pp. 49-59.

[27] G. Ramamurthy and B. Sengupta, “Modeling and Analysis ofa
Variable Bit Rate Video Multiplexor,” Proceedings of INFOCOM
‘92, Florence, Italy, 1992, pp. 817-827.

[28] D. L. Jagerman and B. Melamed, “The Transition and Autocorrela-
tion Structure of TES Processes Part |: General Theory,” Stochastic
Models, vol. 8, no. 2, 1992, pp. 193-219.

[29] D. L. Jagerman and B. Melamed, “The Transition and Autocorrela-
tion Structure of TES Processes, Part ll: Special Cases,” Stochastic Mod-
els, vol. 8, no. 3, 1992, pp. 499-527.

(30] B. Melamed and B. Sengupta, “TES Modeling of Video Traffic,”
IEICE Trans. on Commun., vol. E75-B, no. 12, 1992, pp.1292-1300.

[31] L. Devroye, Non-Uniform Random Variate Generation, Berlin, Hei-
delberg, (New York: Springer-Verlag, 1986).

[32] D. Geist and B. Melamed, "TEStool: An Environment for Visual
Interactive Modeling of Autocorrelated Traffic,” Proceedings of
the 1992 International Conference on Communications, Chicago, lili-
nois. vol. 3, 1992, pp. 1285-89.

[33] D. Le Gall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Commun. of the ACM, vol. 34, 1991, pp. 46-58.
[34] W. E. Leland et al., “On the Self-Similar Nature of Ethernet Traf-

fic,” in press, Bellcore, Morristown, New Jersey, 1993.

{35]J. Beran etal, “Variable-Bit-Rate Video Traffic and Long-Range Depen-
dence,” accepted for publication in /EEE Trans. on Commun.,
1992.

[36] B. B. Mandelbrot, The Fractal Geometry of Nature, (New York,
NY: Freeman, 1983).

[37] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian
Motions, Fractional Noises and Applications,” SIAM Review, vol.
10, 1968, pp. 422-437.

[38] C. W.J. Grange and R. Joyeux, “An Introduction to Long-Memory Time
Series Models and Fractional Differencing, * Time Series Anal.,
vol. 1, 1980, pp. 15-29.

[39] D. R. Cox, “Long-Range Dependence: A Review," in Statistics:

An Appraisal, H.A. David and H.T. David, Eds., (The lowa State
University Press, Ames, lowa, 1984) pp. 55-74.

[40]H. E. Hurst, “Long-Term Storage Capacity of Reservoirs,” Trans. Amer.
Soc. Civil Engineers, vol. 116, 1951, pp. 770-799.

[41] Q. Wang and V. Frost, “Efficient Estimation of Cell Blocking Prob-
ability for ATM Systems,” JEEE Trans. on Networking, April 1993.

{42] F. B. Bernabei et al., “ATM System Buffer Design Under Very Low
Cell Loss Probability Constraints,” IEEE Conf. on Computer Commun.,
INFOCOM ‘91, Bal Harbor, FL, April 3-11, 1991.

1431 J. P. C. Kleijnen, Statistical Techniques in Simulation, Part |, New
York, NY: Marcel Dekker, Inc., 1974.

{44] C. E. Clark, “Importance Sampling in Monte Carlo Analysis,”
Operations Research, Sept./Oct. 1961, pp. 603-620.

{45] K. S. Shanmugan and P. Balaban, “A Modified Monte Carlo Simu-
lation Technique for the Evaluation of Error Rate in Digital Com-
munication Systems," IEEE Trans. on Commun., vol. 28, no. 11,
Nov. 1980, pp. 1916-1924.

[46] V. G. Hansen, “Detection Performance of Some Nonparametric
Rank Tests and an Application to Radar,” IEEE Trans. on Informa-
tion Theory, vol. 16, no. 3, May 1970, pp. 309-318.

[47] M. A. Crane, An Introduction to the Regenerative Method for
Simulation Analysis, (Berlin, Heidelberg, New York: Springer-Ver-
lag, 1977)

[48] J. A. Bucklew, Large Deviation Techniques in Decision, Simulation,
and Estimation, (New York, NY: John Wiley & Sons, inc., 1990).
{49] M. Devetsikiotis and K. Townsend, “Statistical Optimization of Dynam-
ic Importance Sampling Parameters for Efficient Simulation of
Communication Networks,” to appear in IEEE/ACM Trans. on Net-

working.

[50] D. Reininger, B. Melamed, D. Raychandhuri, “Variable Bit Rate
MPEG Video: Characteristics, Modeling, and Multiplexing,” to appear
inITC, 1994,

Biographies

VICTOR S. FROST [SM “90] received B.S., M.S., and Ph.D. degrees from
the University of Kansas, Lawrence in 1977, 1978, and 1982, respec-
tively. He joined the faculty of the University of Kansas, Lawrence,
Kansas, in 1982, where heiis currently a professor of electrical engineering
and computer science. He has been the director of the Telecommuni-
cations and Information Sciences Laboratory at the University of
Kansas since 1987. His current research interests are in the areas of
integrated communication networks, high-speed networks, communi-
cations system analysis, and simulation. Heis currentlyinvolved inresearch
on the MAGIC gigabit ATM testbed. He has received a Presidential
Young Investigator Award from the National Science Foundation in 1984,
an Air Force Summer Faculty Fellowship, a Ralph R. Teetor Educational
Award from the Society of Automotive Engineers, and the Miller Pro-
fessional Development Awards for Engineering Research and Service
in 1986 and 1991 respectively. He is a member of Eta Kappa Nu, Tau
Beta Pi, and he served as chair of the Kansas City Section of the IEEE
Communications Society from June 1991 through December 1992

BENJAMIN MELAMED [F '94] is head of the Performance Analysis Department
at the C&C Research Laboratories, NEC USA, Inc., Princeton, New Jer-
sey, where he has been employed since 1989. His research interestsinclude
system modeling and analysis, simulation, stochastic processes, and visu-
al modeling environments. Melamed received a B.Sc. in mathematics
and statistics from Tel Aviv University in 1972 and M.S. and Ph.D.
degrees in computer science from the University of Michigan in 1973
and 1976, respectively. From 1977 to 1981 he taught at the depart-
ment of Industrial Engineering and Management Science at Northwestern
University. He joined the Performance Analysis Department at Bell
Laboratoriesin 1981 and became an AT&T Bell Laboratories fellowin 1988.

Telecommu-

nications

professionals

are being
called upon

to design and

manage an

assortment of

communica-

tions systems
in the face of

fast-moving
technology
and a
climate of
increasing

customer

expectations.

IEEE Communications Magazine * March 1994

81



